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ABSTRACT 

Progress on tracking with recurrent neural networks is presented. Appli- 
cations of feed forward networks to High Energy Physics are discussed. 
The situation regarding hardware implementations of neural networks is 
assessed. 

In previous work [l] we have discussed a method for reconstructing tracks using a Hopfield 
style recurrent neural network. Directed links between hit points were identified with neurons 
which interact with each other via an interconnection strength 

*, = Acos”@ij 
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where Bij is the angle between links i and j, and Ji, lj are their lengths. It is interesting to note 
that an essentially identical connection matrix was derived independently [2] by Peterson. 

Considerable effort was put into trying to optimise the performance by varying the form 
of the zj matrix. Following an argument of Zucker [3] we believe that one will probably 
never obtain perfect performance without somehow incorporating curvature information. Up 
until now our search of parameter space has been rather haphasard, as learning algorithms 
for recurrent networks such as that of Pineda [4] were unknown to us. Although we do not 
expect to achieve perfect performance, we intend to use such a learning rule to deduce hn 
optimum connection matrix Tij and compare it to the one we obtained heuristically. 

The neural net performs a useful function even though it does not suppress all of the 
incorrect links. That this is so can be seen by comparing a Hough transform of the data 
before and after the application of the neural net algorithm, as is shown schematically in 
figure 1. The neural net, by using only local slope information has improved the signal to 
noise ratio for tracks over background by an large factor. The &al track information could 
be efficiently obtained by presenting the neural net results to a track fitting program. 

In our previous work, we suggested that the neural net algorithm could provide big 
speedups if implemented on vector or parallel machines. We have begun to look into this 
question [5]. Simulated events of the form W + jet jet were generated for a detector modelled 
on the DO detector at Fermilab. Each charged particle could form as many as six generic 
‘hits’; one in the TRD, one in each of four cylindrical layers of tracking chambers (called 
the CDC; these ‘hits’ are actually segments but we did not make use of this information), 
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and one each in the electromagnetic and hadronic calorimeters outside the CDC. Links were 
defined between hits as before but this time the connection matrix used was 

Tij = fijcoa”aijcos”pij 

where oij is the angle between i and j placed tail to tail, pij is the angle between radial 
vectors to the midpoints of i and j, n = 100, fij is set equal to +l for i, j head to tail, -1 
for i, j head to head or tail to tail, and 0 in all other cases. 

Sample results are shown in figure 2. On a small sample of events, it was possible to 
achieve perfect reconstruction by deleting all neurons with activations less than .875 (max- 
imum = 1). The routine wsz implemented both in both scalar and vector versions on a 
Cyber 205 vector supercomputer. The vectorized version ran a factor of 20 faster than the 
scalar version. It is interesting to note that the presence or absence of links from the tracking 
chamber to the calorimeter can be interpreted as a particle’s ‘pointing’ or ‘not-pointing’ to a 
calorimetric energy deposit and thus may be of use in particle identification. 

II. Feed-forward Networks 
A number of interesting applications of feed-forward networks in High Energy Physics 

have appeared. In a feed-forward network, the neurons are arranged into an input layer 
which accepts the data, a number of ‘hidden’ layers, and an output layer which encodes the 
answer (figure 8). Connections are made only from lower layers to higher layers; there are no 
connections within layers and no feedback. Such networks can be used for a variety of pattern 
classification tasks. The necessary Tij can be obtained with ‘learning rules’. A popular one 
is called ‘back-propagation’. In this procedure, a xs is de&ted which is proportional to the 
‘correctness’ of the network’s performance: 

x" = C C(vt,i - (*,i)' 
t i 

where &,i is the activation of neuron i in event t, and [t,i is the desired activation of neuron 
i in event t. One minimizes the x2 through gradient descent: 

Back propagation learning in feed forward networks has been used for e/r discrimination in a 
layered calorimeter, and for -y/jet discrimination in a multicell calorimeter [6]. Planned future 
activities are identification of electrons in jets and track segment finding in SSC-style straw 
chambers [7]. There ue a number of commercial neural net simulation packages available on 
the market, and the above studies have been carried on some of these [E]. Most run on IBM 
PC’s, and source code is not available, which is rather inconvenient since one needs to run 
event generators on bigger machines and to modify the programs at will. Efforts are currently 
underway to concoct a simulator more amenable to the needs of High Energy Pysicists. 

III. Hardware ‘Progress’ 
A neural net tracking processor for a high resolution 4x tracking system would require 

of the order of 10” interconnections. Such high density can probably only be realized in 
VLSI or with optical methods. The status of large scale, truly parallel, hardware neural net 
implementations has not changed in the last year: one only hears about a few experimental 
devices. The resaons for this are not clear. It is probably true that in many applications the 
time and expense of VLSI is not warranted since the speed of neural networks is not very 
important for things like speech processing or handwritten character recognition: these can 
be run as simulations. There are certain problems where the speed is very important, such as 
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in SD1 type applications like missile tracking, but this work may be classified, and that could 
be why we are not hearing about it. It may turn out that HEP will have to be a pioneer in 
large scale neural network hardware. 

The applications to calorimetry require far lower numbers of neurons (one per calorimeter 
cdl) and connections (ui,,t * usiddew + nsidde,, * n,,(prt). As such, these may be good 
candidates as a Srst application of hardware neural nets as a proof of technique and to gain 
experience. 

For tracking, where component counts will be much higher, one wants to find an applica- 
tion which is small enough to be feasible with existing technology, but large enough to solve 
a real problem in an impressive way. We have not yet found such an application, though the 
search continues. Even for a small application, one will probably have to ‘cheat’ by doing 
some of the calculation with DSP’s or microprocessors. This will slow down the operation 
of the nets but hopefully not enough to make them uninteresting. Another line of attack 
currently under study for tracking is to treat the position of a bit with respect to a wire (i.e., 
the drift time) as an analog quantity. This allows to reduce granularity of the system and 
thereby the total number of neurons [7]. 
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Figure Captions 
Figure 1. The top frame shows two straight tracks each formed of five hits (crosses). After 

neural net evolution, the correct links (solid lines), and a few incorrect ones, remain. In the 
Hough transform, we histogram the angles of (dashed) li nes from each intercept bin to each 
hit (lower frame). In the top curve, before neural net evolution, there is much combinatorial 
background. After evolution, we histogram only those lines consistent with valid links; most 
of the background disappears. 

Figure 2. Dotted lines show locations of generated tracks. ‘Generic’ hits are represented 
by crosses. Solid black lines are found links after convergence of the network. Some incorrect 
links are visible, but these can be removed by the cut mentioned in the text. 

Figure 3. A typical three layer feed forward net. This figure was produced by the authors 
of reference 6 using the simulator of reference 8. 
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Figure 3 
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